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COS 397 – (week 02)  DYNAMIC PROGRAMMING 

 

Computations with memoization.  

 

Memoization is a technique used to speed up computer programs by storing the results of functions for 

later reuse, rather than recomputing them (the word memoization is often confused with memorization, 

which, although a good description of the process, is not limited to this specific meaning). 

 

Fibonacci sequence:        

 
typedef unsigned long long int LONG; 

LONG a[94]; 

LONG f(int i) 

{if(a[i]>0) return a[i]; 

 a[i]=f(i-2)+f(i-1); 

 return a[i]; 

} 

int main() 

{a[1]=1; a[2]=1;    

 for(int i=1;i<94;i++) cout << f(i) << " "; 

} 

 

Why do we need typedef unsigned long long int LONG; ? 

What is the purpose of the magic number 94 here? 

 

Typical case study: Finding the longest increasing subsequence. 

 

Example: Given a sequence of integers 9,5,2,8,7,3,1,6,4, one possible solution is 2,3,4. 

 

Algorithm: Let us denote the given sequence by a[i], i = 1, 2, ..., n. Indicating by s[i] the length of the 

longest increasing subsequence that ends at a[i], our goal is to compute successively for i = 1, 2, ..., n, 

all the values of s[i]. 

 

First, it is clear that s[1] = 1. Next, if we have already computed all values up to the i-th position: s[1], 

s[2], ..., s[i], then  s[i+1] = 1 +  max {s[j] : 0 ≤ j ≤ i, a[j] < a[i+1]}  

(in case this set is empty, we assume s[i+1] = 1). 

 

The length of the longest subsequence can be found by computing the maximal value of s[j] over all j 

= 1, 2,.., n. How we can find the longest increasing subsequence, see Exercise 2. 

 

Following the algorithm, we make out the table below for the above example: 

 

 

i  = 1 2 3 4 5 6 7 8 9 
a[i] = 9 5 2 8 7 3 1 6 4 

s[i] = 1 1 1 2 2 2 1 3 3 
j_max = - - - 2 2 3 - 6 6 

backward    *   *   * 

 

Exercises: 

 

1. Implement a program to find the length of the longest increasing subsequence for a given integer 

sequence as input data. 

2. Extent the previous program to find also the longest increasing subsequence itself (one instance, if 

there is more then one solution). Hint: As is seen in the table, start at the position i for which the value 

of s[i] is the largest. The backward step is: move to the new position i_new for which i_new = 

j_max[i], and assign i=i_max to do the next step.   

bword://!!ARV6FUJ2JP,computer/
bword://!!ARV6FUJ2JP,Computer%20programs/
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Longest Common Subsequence 

 

Given two sequences of items, find the longest subsequence present in both of them. A subsequence is 

a sequence that appears in the same relative order, but not necessarily contiguous. For example, in the 

string abcdefg, "abc", "abg", "bdf", "aeg" are all subsequences.  

A naive exponential algorithm is to notice that a string of length n has O(2
n
) different subsequences, so 

we can take the shorter string of both given, and test each of its subsequences for presence in the other 

string.  

Recursive solution  

We can try to solve the problem in terms of smaller subproblems. We are given two strings x and y, of 

length n and m respectively. We solve the problem of finding the longest common subsequence of x = 

x1...n and y = y1...m by taking the best of the three possible cases:  

1. The longest common subsequence of the strings x1...n - 1 and y1...m  

2. The longest common subsequence of the strings x1...n and y1...m - 1  

3. If xn is the same as ym, the longest common subsequence of the strings x1...n - 1 and y1...m - 1, 

followed by the common last character.  

 
string lcs(string x, string y) 

{   

  int n=x.size(); 

  int m=y.size(); 

  string best=""; 

  if ((n==0) || (m==0)) return best; 

  string s1 = lcs(x.substr(0,n-1),y.substr(0,m)); 

  string s2 = lcs(x.substr(0,n),y.substr(0,m-1)); 

  string ss = lcs(x.substr(0,n-1),y.substr(0,m-1)); 

  if(s1.size()>s2.size()) best=s1; else best=s2; 

  if((x[n-1]==y[m-1]) && (best.size()<ss.size()+1))best = ss+x[n-1]; 

  return best; 

} 

int main() {cout << lcs("abcde","axcye") << endl;} 

 

Obviously, this is still not very efficient. But because the subproblems are repeated, we can use 

memoization. An efficient way, which avoids the overhead of function calls, is to order the 

computation in such a way that whenever the results of subproblems are needed, they have already 

been computed, and can simply be looked up in a table. This is the idea of the Dynamic Programming. 

We find lcs(x1..i,y1..j) for every i and j, starting from smaller ones, storing the results in an array at index 

(i,j) as we go along.  

Dynamic programming solution closely parallels the recursive solution above, while entirely 

eliminating recursive calls. This "small" change makes the difference between exponential time and 

polynomial time.  

 

Checkerboard 

Consider a checkerboard with n × n squares and a cost-function c(i, j) which returns a cost associated 

with square i,j (i being the row, j being the column). For instance (on a 5 × 5 checkerboard), 
 

  +---+---+---+---+---+ 

5 | 6 | 7 | 4 | 7 | 8 | 

  +---|---|---|---|---+ 

4 | 7 | 6 | 1 | 1 | 4 | 

  +---|---|---|---|---+ 

3 | 3 | 5 | 7 | 8 | 2 | 

  +---|---|---|---|---+ 

2 | 2 | 6 | 7 | 0 | 2 | 

  +---|---|---|---|---+ 

1 | 7 | 3 | 5 | 6 | 1 | 

  +---+---+---+---+---+ 

    1   2   3   4   5 
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Thus c(1, 3) = 5 

Let us say you had a checker that could start at any square on the first rank (i.e., row) and you wanted 

to know the shortest path (sum of the costs of the visited squares are at a minimum) to get to the last 

rank, assuming the checker could move only diagonally left forward, diagonally right forward, or 

straight forward. That is, a checker on (1,3) can move to (2,2), (2,3) or (2,4). 

 
  +---+---+---+---+---+ 

5 |   |   |   |   |   | 

  +---|---|---|---|---+ 

4 |   |   |   |   |   | 

  +---|---|---|---|---+ 

3 |   |   |   |   |   | 

  +---|---|---|---|---+ 

2 |   | x | x | x |   | 

  +---|---|---|---|---+ 

1 |   |   | O |   |   | 

  +---+---+---+---+---+ 

    1   2   3   4   5 

 

This problem exhibits optimal substructure. That is, the solution to the entire problem relies on 

solutions to subproblems. Let us define a function q(i, j) as 

 

q(i, j) = the minimum cost to reach square (i, j) 

 

If we can find the values of this function for all the squares at rank n, we pick the minimum and follow 

that path backwards to get the shortest path. 

It is easy to see that q(i, j) is equal to the minimum cost to get to any of the three squares below it 

(since those are the only squares that can reach it) plus c(i, j). For instance: 

 
  +---+---+---+---+---+ 

5 |   |   |   |   |   | 

  +---|---|---|---|---+ 

4 |   |   | A |   |   | 

  +---|---|---|---|---+ 

3 |   | B | C | D |   | 

  +---|---|---|---|---+ 

2 |   |   |   |   |   | 

  +---|---|---|---|---+ 

1 |   |   |   |   |   | 

  +---+---+---+---+---+ 

    1   2   3   4   5 

 

 
 

Now, let us define q(i, j) in little more general terms: 

 

 
 

This equation is pretty straightforward. The first line is simply there to make the recursive property 

simpler (when dealing with the edges, so we need only one recursion). The second line says what 

happens in the first rank, so we have something to start with. The third line, the recursion, is the 

important part. It is basically the same as the A,B,C,D example. From this definition we can make a 
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straightforward recursive code for q(i, j). In the following pseudocode, n is the size of the board, c(i, 

j) is the cost-function, and min() returns the minimum of a number of values: 
 

int minCost(int i, int j) 

{if ((j < 1)||(j > n)) 

  return infinity; 

 else if (i == 1) 

  return c(i, j); 

 else     

  return  

   min(minCost(i-1,j-1),minCost(i-1,j),minCost(i-1,j+1))+c(i,j); 

} 

It should be noted that this function just computes the path-cost, not the actual path. We will get to the 

path soon. This, like the Fibonacci-numbers example, is horribly slow since it spends mountains of 

time recomputing the same shortest paths over and over. However, we can compute it much faster in a 

bottom up-fashion if we use a two-dimensional array q[i, j] instead of a function. Why do we do 

that? Simply because when using a function we recompute the same path over and over, and we can 

choose what values to compute first. 

We also need to know what the actual path is. The path problem we can solve using another array 

p[i,j], a predecessor array. This array basically says where paths come from. Consider the 

following code: 
  

function computeShortestPathArrays() 

     for x from 1 to n 

         q[1, x] := c(1, x) 

     for y from 1 to n 

         q[y, 0]     := infinity 

         q[y, n + 1] := infinity 

     for y from 2 to n 

         for x from 1 to n 

             m := min(q[y-1, x-1], q[y-1, x], q[y-1, x+1]) 

             q[y, x] := m + c(y, x)  

             if m = q[y-1, x-1] 

                 p[y, x] := -1 

             else if m = q[y-1, x] 

                 p[y, x] :=  0 

             else 

                 p[y, x] :=  1 

 

Now the rest is a simple matter of finding the minimum and printing it. 
  

function computeShortestPath() 

     computeShortestPathArrays() 

     minIndex := 1 

     min := q[n, 1]  

     for i from 2 to n  

         if q[n, i] < min 

             minIndex := i 

             min := q[n, i] 

     printPath(n, minIndex) 

 function printPath(y, x) 

     print(x) 

     print("<-") 

     if y = 2 

         print(x + p[y, x]) 

     else 

         printPath(y-1, x + p[y, x]) 
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Dynamic programming 
In computer science, dynamic programming is a method of solving problems exhibiting the 

properties of overlapping subproblems and optimal substructure  that takes much less time than naive 

methods. 

The term was originally used in the 1940s by Richard Bellman to describe the process of solving 

problems where one needs to find the best decisions one after another. By 1953, he had refined this to 

the modern meaning. The field was founded as a systems analysis and engineering topic which is 

recognized by the IEEE. 

The word "programming" in "dynamic programming" has no particular connection to computer 

programming at all. A program is, instead, the plan for action that is produced. For instance, a 

finalized schedule of events at an exhibition is sometimes called a program. Programming, in this 

sense, is finding an acceptable plan of action. 

 
 

On the Figure: Finding the shortest path in a graph using optimal substructure; a wavy line indicates 

a shortest path between the two vertices it connects; the bold line is the overall shortest path from start 

to goal. 

 

Optimal substructure means that optimal solutions of subproblems can be used to find the optimal 

solutions of the overall problem. For example, the shortest path to a goal from a vertex in an acyclic 

graph can be found by first computing the shortest path to the goal from all adjacent vertices, and then 

using this to pick the best overall path, as shown in Figure 1. In general, we can solve a problem with 

optimal substructure using a three-step process: 

 

1. Break the problem into smaller subproblems.  

2. Solve these problems optimally using this three-step process recursively.  

3. Use these optimal solutions to construct an optimal solution for the original problem.  

 

The subproblems are, themselves, solved by dividing them into sub-subproblems, and so on, until we 

reach some simple case that is easy to solve. 

 
 

On the Figure. The subproblem graph for the Fibonacci sequence. That it is not a tree but a DAG 

indicates overlapping subproblems. 

 

To say that a problem has overlapping subproblems is to say that the same subproblems are used to 

solve many different larger problems. For example, in the Fibonacci sequence, F3 = F1 + F2 and F4 = F2 

+ F3 — computing each number involves computing F2. Because both F3 and F4 are needed to compute 

F5, a naïve approach to computing F5 may end up computing F2 twice or more. This applies whenever 

overlapping subproblems are present: a naïve approach may waste time recomputing optimal solutions 

to subproblems it has already solved. 

In order to avoid this, we instead save the solutions to problems we have already solved. Then, if we 

need to solve the same problem later, we can retrieve and reuse our already-computed solution. This 

approach is called memoization (not memorization, although this term also fits). If we are sure we 

http://en.wikipedia.org/wiki/Image:Shortest_path_optimal_substructure.png
http://en.wikipedia.org/wiki/Image:Fibonacci_dynamic_programming.png
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won't need a particular solution anymore, we can throw it away to save space. In some cases, we can 

even compute the solutions to subproblems we know that we'll need in advance. 

In summary, dynamic programming makes use of: 

 

 Overlapping subproblems  

 Optimal substructure  

 Memoization  

 

Dynamic programming usually takes one of two approaches: 

 

 Top-down approach: The problem is broken into subproblems, and these 

subproblems are solved and the solutions remembered, in case they need to be solved again. 

This is recursion and memoization combined together.  

 Bottom-up approach: All subproblems that might be needed are solved in advance 

and then used to build up solutions to larger problems. This approach is slightly better in stack 

space and number of function calls, but it is sometimes not intuitive to figure out all the 

subproblems needed for solving the given problem.  

 

Some programming languages with special extensions: 

 

http://www.apl.jhu.edu/~paulmac/c++-memoization.html  

 

can automatically memoize the result of a function call with a particular set of arguments, in order to 

speed up call-by-name evaluation (this mechanism is referred to as call-by-need). Some languages 

(e.g., Maple) have automatic memoization builtin. This is only possible for a function which has no 

side-effects, which is always true in pure functional languages but seldom true in imperative 

languages. 

 

Knapsack problem 

Example of a one-dimensional (constraint) knapsack 

problem: which boxes should be chosen to maximize the 

amount of money while still keeping the overall weight 

under 15 kg? A multi dimensional problem could consider 

the density or dimensions of the boxes, the latter a typical 

packing problem 

The knapsack problem is a problem in combinatorial 

optimization. It derives its name from the maximization 

problem of choosing possible essentials that can fit into one 

bag (of maximum weight) to be carried on a trip. A similar 

problem very often appears in business, combinatorics, 

complexity theory, cryptography and applied mathematics. 

Given a set of items, each with a cost and a value, then 

determine the number of each item to include in a collection 

so that the total cost is less than some given cost and the total value is as large as possible. 

The decision problem form of the knapsack problem is the question "can a value of at least V be 

achieved without exceeding the cost C?" 

In the following, we have n kinds of items, x1 through xn. Each item xj has a value pj and a weight wj. 

The maximum weight that we can carry in the bag is C. 

The 0-1 knapsack problem restricts the number of each kind of item to zero or one. 

Mathematically the 0-1-knapsack problem can be formulated as:  
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The bounded knapsack problem restricts the number of each item to a specific value. 

Mathematically the bounded knapsack problem can be formulated as:  

 
The unbounded knapsack problem places no bounds on the number of each item. 

Of particular interest is the special case of the problem with these properties: 

 It is a decision problem  

 It is a 0/1 problem  

 For each item, the cost equals the value: C = V  

Notice that in this special case, the problem is equivalent to this: given a set of integers, does any 

subset of it add up to exactly C? Or, if negative costs are allowed and C is chosen to be zero, the 

problem is: given a set of integers, does any subset add up to exactly 0? This special case is called the 

subset sum problem. For some reason, it is traditional in cryptography to say "knapsack problem" 

when it is actually the "subset sum problem" that is meant. 

The knapsack problem is often solved using dynamic programming, though no polynomial-time 

algorithm is known for the general problem. Both the general knapsack problem and the subset sum 

problem are NP-hard, and this has led to attempts to use subset sum as the basis for public key 

cryptography systems, such as Merkle-Hellman.  

 
Dynamic programming solution 
The knapsack problem can be solved in pseudo-polynomial time using dynamic programming. The 

following depicts a dynamic programming solution for the unbounded knapsack problem. 

In computational complexity theory, a numeric algorithm runs in pseudo-polynomial time if its 

running time is polynomial in the numeric value of the input (which is exponential in the length of the 

input -- its number of digits). 

 

Let the costs be c1, ..., cn and the corresponding values v1, ..., vn. We wish to maximize total value 

subject to the constraint that total cost is less than or equal to C. Then for each i ≤ C, define A(i) to be 

the maximum value that can be attained with total cost less than or equal to i. Clearly, A(C) is the 

solution to the problem. 

Define A(i) recursively as follows: 

 A(0) = 0  

 A(i) = max { vj + A(i − cj) | cj ≤ i }  

Here the maximum of the empty set is taken to be zero. Tabulating the results from A(0) up through 

A(C) gives the solution. Since the calculation of each A(i) involves examining n items (all of which 

have been previously computed), and there are C values of A(i) to calculate, the running time of the 

dynamic programming solution is thus O(nC). 

This does not contradict the fact that the knapsack problem is NP-complete, since C, unlike n, is not 

polynomial in the length of the input to the problem. The length of the input to the problem is 

proportional to the number of bits in C, not to C itself. 

A similar dynamic programming solution for the 0-1 knapsack problem also runs in pseudo-

polynomial time. As above, let the costs be c1, ..., cn and the corresponding values v1, ..., vn. We wish 

to maximize total value subject to the constraint that total cost is less than C. Define a recursive 

function, A(i, j) to be the maximum value that can be attained with cost less than or equal to j using 

items up to i. 

We can define A(i,j) recursively as follows: 

 A(0, j) = 0  

 A(i, 0) = 0  

 A(i, j) = A(i – 1, j) if ci > j  

 A(i, j) = max(A(i – 1, j), vi + A(i –1, j – ci)) if ci ≤ j  

The solution can then be found by calculating A(n, C). To do this efficiently we can use a table to 

store previous computations. This solution will therefore run in O(nC) time and O(nC) space, though 

with some slight modifications we can reduce the space complexity to O(C). 
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Matrix chain multiplication 
Matrix chain multiplication is an optimization problem that can be solved using dynamic 

programming. Given a sequence of matrices, we want to find the most efficient way to multiply these 

matrices together. The problem is not actually to perform the multiplications, but merely to decide in 

what order to perform the multiplications. 

We have many options because matrix multiplication is associative. In other words, no matter how we 

parenthesize the product, the result will be the same. For example, if we had four matrices A, B, C, and 

D, we would have: 

(ABC)D = (AB)(CD) = A(BCD) = A(BC)D = ...  

However, the order in which we parenthesize the product affects the number of simple arithmetic 

operations needed to compute the product, or the efficiency. For example, suppose A is a 10 × 30 

matrix, B is a 30 × 5 matrix, and C is a 5 × 60 matrix. Then, 

(AB)C = (10×30×5) + (10×5×60) = 1500 + 3000 = 4500 operations  

A(BC) = (30×5×60) + (10×30×60) = 9000 + 18000 = 27000 operations  

Clearly the first method is the more efficient. Now that we have identified the problem, how do we 

determine the optimal parenthesization of a product of n matrices? We could go through each possible 

parenthesization (brute force), but this would require time O(2
n
), which is very slow and impractical 

for large n. The solution, as we will see, is to break up the problem into a set of related subproblems. 

By solving subproblems one time and reusing these solutions many times, we can drastically reduce 

the time required. This is known as dynamic programming. 

 
The algorithm 
To begin, let's assume that all we really want to know is the minimum cost, or minimum number of 

arithmetic operations, needed to multiply out the matrices. If we're only multiplying two matrices, 

there's only one way to multiply them, so the minimum cost is the cost of doing this. In general, we 

can find the minimum cost using the following recursive algorithm: 

 

 Take the sequence of matrices and separate it into two subsequences.  

 Find the minimum cost of multiplying out each subsequence.  

 Add these costs together, and add in the cost of multiplying the two result matrices.  

 Do this for each possible position at which the sequence of matrices can be split, and 

take the minimum over all of them.  

 

For example, if we have four matrices ABCD, we compute the cost required to find each of (A)(BCD), 

(AB)(CD), and (ABC)(D), making recursive calls to find the minimum cost to compute ABC, AB, CD, 

and BCD. We then choose the best one. Better still, this yields not only the minimum cost, but also 

demonstrates the best way of doing the multiplication: just group it the way that yields the lowest total 

cost, and do the same for each factor. 

 

Unfortunately, if we implement this algorithm we discover that it's just as slow as the naive way of 

trying all permutations! What went wrong? The answer is that we're doing a lot of redundant work. 

For example, above we made a recursive call to find the best cost for computing both ABC and AB. 

But finding the best cost for computing ABC also requires finding the best cost for AB. As the 

recursion grows deeper, more and more of this type of unnecessary repetition occurs. 

One simple solution is memoization: each time we compute the minimum cost needed to multiply out 

a specific subsequence, we save it. If we are ever asked to compute it again, we simply give the saved 

answer, and do not recompute it. Since there are about n
2
/2 different subsequences, where n is the 

number of matrices, the space required to do this is reasonable. It can be shown that this simple trick 

brings the runtime down from O(2
n
) to O(n

3
), which is more than efficient enough for real 

applications. This is top-down dynamic programming. 
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Pseudocode: 
Matrix-Chain-Order(int p[]) 

{ 

  n = p.length - 1; 

  for (i = 1; i <= n; i++) m[i,i] = 0; 

  for (l=2; l<=n; l++)  

  { // l is chain length 

   for (i=1; i<=n-l+1; i++) 

    { j = i+l-1; 

      m[i,j] = MAXINT; 

      for (k=i; k<=j-1; k++)  

       { 

         q = m[i,k] + m[k+1,j] + p[i-1]*p[k]*p[j]; 

         if (q < m[i,j]) {m[i,j] = q; s[i,j] = k;} 

       } 

    } 

  } 

} 

Another solution is to anticipate which costs we will need and precompute them. It works like this: 

 For each k from 2 to n, the number of matrices:  

 Compute the minimum costs of each subsequence of length k, using the costs 

already computed.  

When we're done, we have the minimum cost for the full sequence. Although it also requires O(n
3
) 

time, this approach has the practical advantages that it requires no recursion, no testing if a value has 

already been computed, and we can save space by throwing away some of the subresults that are no 

longer needed. This is bottom-up dynamic programming: a second way by which this problem can be 

solved. 

 

Minimum Length Triangulation 

A triangulation of a polygon is a set of non-intersecting diagonals which 

partitions the polygon into diagonals. The length of a triangulation is the 

sum of the diagonal lengths. We seek to find the minimum length 

triangulation. Once we identify the correct connecting vertex, the 

polygon is partitioned into two smaller pieces, both of which must be 

triangulated optimally. 

 

t[i, i + 1] = 0,  t[i, j] = min{t[i, k] + t[k, j] + L(i,k) + L(k,j), k = i, …, j}   

 

Evaluation proceeds as in the matrix multiplication example: n(n–1)/2 values of t, each of which takes 

O(j-i) time if we evaluate the sections in order of increasing size.  

 


